Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 545
Filtrar
1.
PLoS One ; 19(4): e0298418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625857

RESUMO

The chemokines of the immune system act as first responders by operating as chemoattractants, directing immune cells to specific locations of inflamed tissues. This promiscuous network is comprised of 50 ligands and 18 receptors where the ligands may interact with the receptors in various oligomeric states i.e., monomers, homodimers, and heterodimers. Chemokine receptors are G-protein coupled receptors (GPCRs) present in the membrane of immune cells. The migration of immune cells occurs in response to a concentration gradient of the ligands. Chemotaxis of neutrophils is directed by CXC-ligand (CXCL) activation of the membrane bound CXC chemokine receptor 2 (CXCR2). CXCR2 plays an important role in human health and is linked to disorders such as autoimmune disorders, inflammation, and cancer. Yet, despite their important role, little is known about the biophysical characteristics controlling ligand:ligand and ligand:receptor interaction essential for biological activity. In this work, we study the homodimers of three of the CXCR2 cognate ligands, CXCL1, CXCL5, and CXCL8. The ligands share high structural integrity but a low sequence identity. We show that the sequence diversity has evolved different binding affinities and stabilities for the CXC-ligands resulting in diverse agonist/antagonist behavior. Furthermore, CXC-ligands fold through a three-state mechanism, populating a folded monomeric state before associating into an active dimer.


Assuntos
Interleucina-8 , Receptores de Interleucina-8B , Humanos , Receptores de Interleucina-8B/genética , Ligantes , Interleucina-8/metabolismo , Quimiocinas/metabolismo , Quimiocina CXCL1 , Fatores Quimiotáticos/metabolismo , Quimiotaxia
2.
J Med Microbiol ; 73(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38567642

RESUMO

Introduction. Staphylococcus aureus is the leading cause of acute medical implant infections, representing a significant modern medical concern. The success of S. aureus as a pathogen in these cases resides in its arsenal of virulence factors, resistance to multiple antimicrobials, mechanisms of immune modulation, and ability to rapidly form biofilms associated with implant surfaces. S. aureus device-associated, biofilm-mediated infections are often persistent and notoriously difficult to treat, skewing innate immune responses to promote chronic reoccurring infections. While relatively little is known of the role neutrophils play in response to acute S. aureus biofilm infections, these effector cells must be efficiently recruited to sites of infection via directed chemotaxis. Here we investigate the effects of modulating CXC chemokine receptor 2 (CXCR2) activity, predominantly expressed on neutrophils, during S. aureus implant-associated infection.Hypothesis. We hypothesize that modulation of CXCR2 expression and/or signalling activities during S. aureus infection, and thus neutrophil recruitment, extravasation and antimicrobial activity, will affect infection control and bacterial burdens in a mouse model of implant-associated infection.Aim. This investigation aims to elucidate the impact of altered CXCR2 activity during S. aureus biofilm-mediated infection that may help develop a framework for an effective novel strategy to prevent morbidity and mortality associated with implant infections.Methodology. To examine the role of CXCR2 during S. aureus implant infection, we employed a mouse model of indwelling subcutaneous catheter infection using a community-associated methicillin-resistant S. aureus (MRSA) strain. To assess the role of CXCR2 induction or inhibition during infection, treatment groups received daily intraperitoneal doses of either Lipocalin-2 (Lcn2) or AZD5069, respectively. At the end of the study, catheters and surrounding soft tissues were analysed for bacterial burdens and dissemination, and Cxcr2 transcription within the implant-associated tissues was quantified.Results. Mice treated with Lcn2 developed higher bacterial burdens within the soft tissue surrounding the implant site, which was associated with increased Cxcr2 expression. AZD5069 treatment also resulted in increased implant- and tissues-associated bacterial titres, as well as enhanced Cxcr2 expression.Conclusion. Our results demonstrate that CXCR2 plays an essential role in regulating the severity of S. aureus implant-associated infections. Interestingly, however, perturbation of CXCR2 expression or signalling both resulted in enhanced Cxcr2 transcription and elevated implant-associated bacterial burdens. Thus, CXCR2 appears finely tuned to efficiently recruit effector cells and mediate control of S. aureus biofilm-mediated infection.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pirimidinas , Infecções Estafilocócicas , Sulfonamidas , Camundongos , Animais , Staphylococcus aureus/fisiologia , Staphylococcus aureus Resistente à Meticilina/fisiologia , Receptores de Interleucina-8B/genética , Infecções Estafilocócicas/microbiologia , Biofilmes
3.
Cell Commun Signal ; 22(1): 191, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528533

RESUMO

BACKGROUND: The incidence of diabetic kidney disease (DKD) continues to rapidly increase, with limited available treatment options. One of the hallmarks of DKD is persistent inflammation, but the underlying molecular mechanisms of early diabetic kidney injury remain poorly understood. C-X-C chemokine receptor 2 (CXCR2), plays an important role in the progression of inflammation-related vascular diseases and may bridge between glomerular endothelium and persistent inflammation in DKD. METHODS: Multiple methods were employed to assess the expression levels of CXCR2 and its ligands, as well as renal inflammatory response and endothelial glycocalyx shedding in patients with DKD. The effects of CXCR2 on glycocalyx shedding, and persistent renal inflammation was examined in a type 2 diabetic mouse model with Cxcr2 knockout specifically in endothelial cells (DKD-Cxcr2 eCKO mice), as well as in glomerular endothelial cells (GECs), cultured in high glucose conditions. RESULTS: CXCR2 was associated with early renal decline in DKD patients, and endothelial-specific knockout of CXCR2 significantly improved renal function in DKD mice, reduced inflammatory cell infiltration, and simultaneously decreased the expression of proinflammatory factors and chemokines in renal tissue. In DKD conditions, glycocalyx shedding was suppressed in endothelial Cxcr2 knockout mice compared to Cxcr2 L/L mice. Modulating CXCR2 expression also affected high glucose-induced inflammation and glycocalyx shedding in GECs. Mechanistically, CXCR2 deficiency inhibited the activation of NF-κB signaling, thereby regulating inflammation, restoring the endothelial glycocalyx, and alleviating DKD. CONCLUSIONS: Taken together, under DKD conditions, activation of CXCR2 exacerbates inflammation through regulation of the NF-κB pathway, leading to endothelial glycocalyx shedding and deteriorating renal function. Endothelial CXCR2 deficiency has a protective role in inflammation and glycocalyx dysfunction, suggesting its potential as a promising therapeutic target for DKD treatment.


Assuntos
Nefropatias Diabéticas , NF-kappa B , Receptores de Interleucina-8B , Animais , Humanos , Camundongos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Células Endoteliais/metabolismo , Endotélio/metabolismo , Glucose , Glicocálix/metabolismo , Inflamação/metabolismo , Camundongos Knockout , NF-kappa B/metabolismo , Receptores de Quimiocinas/uso terapêutico , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Complicações do Diabetes/genética , Complicações do Diabetes/metabolismo
4.
Expert Rev Clin Immunol ; 20(5): 559-569, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38224014

RESUMO

OBJECTIVE: This study aimed to check the expression profile of the C-X-C motif chemokine ligands (CXCLs)-C-X-C motif chemokine receptor 2 (CXCR2) axis in cervical cancer and to explore the cross-talk between cervical cancer cells and neutrophils via CXCLs-CXCR2 axis. METHODS: Available RNA-sequencing data based on bulk tissues and single-cell/nucleus RNA-sequencing data were used for bioinformatic analysis. Cervical cancer cell lines Hela and SiHa cells were utilized for in vitro and in vivo studies. RESULTS: Except for neutrophils, CXCR2 mRNA expression is limited in other types of cells in the cervical tumor microenvironment. CXCLs bind to CXCR2 and are mainly expressed by tumor cells. CXCL1, 2, 3, 5, 6, and 8, which are consistently associated with neutrophil infiltration, are also linked to poor prognosis. SB225002 (a CXCR2 inhibitor) treatment significantly impairs SiHa cell-induced neutrophil migration. CXCL1, CXCL2, CXCL5, or CXCL8 neutralized conditioned medium from SiHa cells have weaker recruiting effects. The conditioned medium of neutrophils from healthy donors can slow cancer cell proliferation. Conditioned medium of tumor-associated neutrophils (TANs) can drastically enhance cervical cancer cell growth in vitro and in vivo. CONCLUSIONS: The CXCLs-CXCR2 axis is critical in neutrophil recruitment and tumor cell proliferation in the cervical cancer microenvironment.


Assuntos
Neutrófilos , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Meios de Cultivo Condicionados/metabolismo , RNA/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Microambiente Tumoral
5.
Trends Mol Med ; 30(1): 37-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37872025

RESUMO

Recent findings have modified our understanding of the roles of chemokine receptor CXCR2 and its ligands in cancer, inflammation, and immunity. Studies in Cxcr2 tissue-specific knockout mice show that this receptor is involved in, among other things, cancer, central nervous system (CNS) function, metabolism, reproduction, COVID-19, and the response to circadian cycles. Moreover, CXCR2 involvement in neutrophil function has been revisited not only in physiology but also for its major contribution to cancers. The recent unfolding of the role of CXCR2 in numerous cancers has led to extensive evaluation of multiple CXCR2 antagonists in preclinical and clinical studies. In this review we discuss the potential of targeting CXCR2 for cancer treatment.


Assuntos
Neoplasias , Receptores de Interleucina-8B , Camundongos , Animais , Humanos , Receptores de Interleucina-8B/genética , Inflamação/metabolismo , Neutrófilos , Neoplasias/genética , Neoplasias/metabolismo , Camundongos Knockout
6.
Clin Exp Pharmacol Physiol ; 50(12): 944-953, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37688444

RESUMO

Myocardial fibrosis (MF) is involved in hypertension, myocardial infarction and heart failure. It has been reported that circular RNA (circRNA) is a key regulatory factor of MF progression. In this study, we revealed that circ_0002295 and CXCR2 were elevated, and miR-1287 was reduced in MF patients. Knockdown of circ_0002295 effectively suppressed the proliferation, migration and MF progression. Circ_0002295 was the molecular sponge of miR-12878, and miR-1287 inhibitor reversed the biological functions of circ_0002295 on the myocardial fibrosis. CXCR2 was a target gene of miR-1287, and CXCR2 silencing relieved the impacts of miR-1287 inhibitor on cardiac myofibroblasts. Circ_0002295 promoted MF progression by regulating the miR-1287/CXCR2 axis, providing a possible circRNA-targeted therapy for MF.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Infarto do Miocárdio , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Coração , MicroRNAs/genética , Receptores de Interleucina-8B/genética , RNA Circular/genética
7.
Nat Commun ; 14(1): 4107, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433790

RESUMO

Neutrophil granulocytes play key roles in innate immunity and shaping adaptive immune responses. They are attracted by chemokines to sites of infection and tissue damage, where they kill and phagocytose bacteria. The chemokine CXCL8 (also known as interleukin-8, abbreviated IL-8) and its G-protein-coupled receptors CXCR1 and CXCR2 are crucial elements in this process, and also the development of many cancers. These GPCRs have therefore been the target of many drug development campaigns and structural studies. Here, we solve the structure of CXCR1 complexed with CXCL8 and cognate G-proteins using cryo-EM, showing the detailed interactions between the receptor, the chemokine and Gαi protein. Unlike the closely related CXCR2, CXCR1 strongly prefers to bind CXCL8 in its monomeric form. The model shows that steric clashes would form between dimeric CXCL8 and extracellular loop 2 (ECL2) of CXCR1. Consistently, transplanting ECL2 of CXCR2 onto CXCR1 abolishes the selectivity for the monomeric chemokine. Our model and functional analysis of various CXCR1 mutants will assist efforts in structure-based drug design targeting specific CXC chemokine receptor subtypes.


Assuntos
Fagocitose , Receptores de Interleucina-8A , Ligantes , Receptores de Interleucina-8A/genética , Imunidade Inata , Desenho de Fármacos , Receptores de Interleucina-8B/genética
8.
Mol Cancer ; 22(1): 92, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270599

RESUMO

BACKGROUND: Though the CXCR2 chemokine receptor is known to play a key role in cancer growth and response to therapy, a direct link between expression of CXCR2 in tumor progenitor cells during induction of tumorigenesis has not been established. METHODS: To characterize the role of CXCR2 during melanoma tumorigenesis, we generated tamoxifen-inducible tyrosinase-promoter driven BrafV600E/Pten-/-/Cxcr2-/- and NRasQ61R/INK4a-/-/Cxcr2-/- melanoma models. In addition, the effects of a CXCR1/CXCR2 antagonist, SX-682, on melanoma tumorigenesis were evaluated in BrafV600E/Pten-/- and NRasQ61R/INK4a-/- mice and in melanoma cell lines. Potential mechanisms by which Cxcr2 affects melanoma tumorigenesis in these murine models were explored using RNAseq, mMCP-counter, ChIPseq, and qRT-PCR; flow cytometry, and reverse phosphoprotein analysis (RPPA). RESULTS: Genetic loss of Cxcr2 or pharmacological inhibition of CXCR1/CXCR2 during melanoma tumor induction resulted in key changes in gene expression that reduced tumor incidence/growth and increased anti-tumor immunity. Interestingly, after Cxcr2 ablation, Tfcp2l1, a key tumor suppressive transcription factor, was the only gene significantly induced with a log2 fold-change greater than 2 in these three different melanoma models. CONCLUSIONS: Here, we provide novel mechanistic insight revealing how loss of Cxcr2 expression/activity in melanoma tumor progenitor cells results in reduced tumor burden and creation of an anti-tumor immune microenvironment. This mechanism entails an increase in expression of the tumor suppressive transcription factor, Tfcp2l1, along with alteration in the expression of genes involved in growth regulation, tumor suppression, stemness, differentiation, and immune modulation. These gene expression changes are coincident with reduction in the activation of key growth regulatory pathways, including AKT and mTOR.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Receptores de Interleucina-8B , Animais , Camundongos , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Melanoma/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Microambiente Tumoral
9.
Sci Rep ; 12(1): 21375, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494512

RESUMO

Activation of the nuclear factor kappa-B (NF-κB) stimulates the production of pro-inflammatory molecules involved in the formation of intracranial aneurysms (IA). The study aimed to assess the NF-κB p65 subunit and the GRO-α chemokine and its receptor CXCR2 concentrations in unruptured intracranial aneurysm patients (UIA, n = 25) compared to individuals without vascular changes in the brain (n = 10). It was also analyzed whether tested proteins are related to the size and number of aneurysms. Cerebrospinal fluid (CSF) and serum protein levels were measured using the ELISA method. Median CSF and serum NF-κB p65 concentrations were significantly lower, while median CSF GRO-α and CXCR2 concentrations were significantly higher in UIA patients compared to the control group. CSF and serum NF-κB p65 concentrations negatively correlated with the number of aneurysms. In UIA patients the median GRO-α concentration was two-fold and CXCR2 almost four-fold higher in CSF compared to the serum value. CSF GRO-α concentration positively correlated with the size of aneurysms.Significantly decreased CSF NF-κB p65 and significantly increased CSF GRO-α and its CXCR2 receptor concentrations in UIA patients compared to the control group may altogether suggest that the canonical NF-κB signaling pathway is activated and its target pro-inflammatory genes are highly expressed in UIA patients. However, to unequivocally assess the involvement of the classical NF-κB pathway with the participation of the NF-κB p65 subunit and the GRO-α/CXCR2 axis in the formation of IA, further in vivo model studies are needed.


Assuntos
Aneurisma Intracraniano , NF-kappa B , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Aneurisma Intracraniano/genética , Transdução de Sinais/genética , Quimiocinas CXC/genética , Fator de Necrose Tumoral alfa/metabolismo
10.
J Cell Mol Med ; 26(23): 5858-5871, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36349481

RESUMO

As the main loading-bearing tissue of eye, sclera exerts an important role in the pathophysiology of glaucoma. Intraocular pressure (IOP) generates mechanical strain on sclera. Recent studies have demonstrated that sclera, especially the peripapillary sclera, undergoes complicated remodelling under the mechanical strain. However, the mechanisms of the hypertensive scleral remodelling in human eyes remained uncertain. In this study, peripapillary human scleral fibroblasts (ppHSFs) were applied cyclic mechanical strain by Flexcell-5000™ tension system. We found that CXC- ligands and CXCR2 were differentially expressed after strain. Increased cell proliferation and inhibited cell motility were observed when CXCR2 was upregulated under the strain, whereas cell proliferation and motility did not have a significant change when CXCR2 was knocked down. CXCR2 could facilitate cell proliferation ability, modulate the mRNA and protein expressions of type I collagen and matrix metalloproteinase 2 via JAK1/2-STAT3 signalling pathway. In addition, CXCR2 might inhibit cell migration via FAK/MLC2 pathway. Taken together, CXCR2 regulated protein production and affected cell behaviours of ppHSFs. It might be a potential therapeutic target for the hypertensive scleral remodelling.


Assuntos
Fibroblastos , Glaucoma , Receptores de Interleucina-8B , Esclera , Humanos , Matriz Extracelular , Fibroblastos/metabolismo , Glaucoma/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Esclera/citologia , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Movimento Celular , Estresse Mecânico , Células Cultivadas
11.
J Biomed Sci ; 29(1): 99, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411463

RESUMO

BACKGROUND: Sorafenib (SOR) is the first line treatment for advanced hepatocellular carcinoma (HCC), but resistance develops frequently. Tumor-associated macrophages (TAMs) have been reported to affect the progression of HCC. We therefore aimed to study the role of TAMs in promoting SOR resistance. METHODS: Immunofluorescence staining for the M2 marker CD204 and the cancer stem cell (CSC) markers CD44 and CD133 was performed in paired HCC and adjacent noncancerous tissues and HCC tissues stratified by response of SOR treatment. HCC/U937 coculture system and cytokines were used to induce M2 polarization for studying the effects of M2 TAMs on CSC properties and apoptotic death of HCC cells after SOR treatment. RESULTS: Higher expression of CD204, CD44, and CD133 was observed in patients with SOR nonresponse (SNR) than in those with SOR response (SR), suggesting that SNR is positively correlated to levels of CSCs and M2 TAMs. After coculture, M2 TAMs could increase the level of CSCs but decrease SOR-induced apoptosis. Incubation of HCC cells with coculture conditioned medium increased the formation of spheres that were resistant to SOR. Furthermore, CXCL1 and CXCL2 were found to be the potential paracrine factors released by M2 TAMs to upregulate SOR resistance in HCC cells. Treatment with CXCL1 and CXCL2 could increase HCC CSC activity but decrease SOR-induced apoptosis by affecting BCL-2 family gene expression. Using pharmacological inhibitors, CXCR2/ERK signaling was found to be critical to CXCL1- and CXCL2-mediated SOR resistance. CONCLUSION: This study identified CXCL1, CXCL2, and their downstream CXCR2/ERK signaling as potential therapeutic targets to overcome SOR resistance in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenibe/farmacologia , Macrófagos Associados a Tumor , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Receptores de Interleucina-8B/genética
12.
Front Immunol ; 13: 1005551, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311783

RESUMO

Neutrophils play a major role in the protection from infections but also in inflammation related to tumor microenvironment. However, cell-extrinsic and -intrinsic cues driving their function at steady state is still fragmentary. Using Cxcr2 knock-out mice, we have evaluated the function of the chemokine receptor Cxcr2 in neutrophil physiology. We show here that Cxcr2 deficiency decreases the percentage of mature neutrophils in the spleen, but not in the bone marrow (BM). There is also an increase of aged CD62Llo CXCR4hi neutrophils in the spleen of KO animals. Spleen Cxcr2-/- neutrophils display a reduced phagocytic ability, whereas BM neutrophils show an enhanced phagocytic ability compared to WT neutrophils. Spleen Cxcr2-/- neutrophils show reduced reactive oxygen species production, F-actin and α-tubulin levels. Moreover, spleen Cxcr2-/- neutrophils display an altered signaling with reduced phosphorylation of ERK1/2 and p38 MAPK, impaired PI3K-AKT, NF-κB, TGFß and IFNγ pathways. Altogether, these results suggest that Cxcr2 is essential for neutrophil physiology.


Assuntos
Neutrófilos , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo
13.
Cell Mol Life Sci ; 79(10): 512, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36094626

RESUMO

To fulfil its orchestration of immune cell trafficking, a network of chemokines and receptors developed that capitalizes on specificity, redundancy, and functional selectivity. The discovery of heteromeric interactions in the chemokine interactome has expanded the complexity within this network. Moreover, some inflammatory mediators, not structurally linked to classical chemokines, bind to chemokine receptors and behave as atypical chemokines (ACKs). We identified macrophage migration inhibitory factor (MIF) as an ACK that binds to chemokine receptors CXCR2 and CXCR4 to promote atherogenic leukocyte recruitment. Here, we hypothesized that chemokine-chemokine interactions extend to ACKs and that MIF forms heterocomplexes with classical chemokines. We tested this hypothesis by using an unbiased chemokine protein array. Platelet chemokine CXCL4L1 (but not its variant CXCL4 or the CXCR2/CXCR4 ligands CXCL8 or CXCL12) was identified as a candidate interactor. MIF/CXCL4L1 complexation was verified by co-immunoprecipitation, surface plasmon-resonance analysis, and microscale thermophoresis, also establishing high-affinity binding. We next determined whether heterocomplex formation modulates inflammatory/atherogenic activities of MIF. Complex formation was observed to inhibit MIF-elicited T-cell chemotaxis as assessed by transwell migration assay and in a 3D-matrix-based live cell-imaging set-up. Heterocomplexation also blocked MIF-triggered migration of microglia in cortical cultures in situ, as well as MIF-mediated monocyte adhesion on aortic endothelial cell monolayers under flow stress conditions. Of note, CXCL4L1 blocked binding of Alexa-MIF to a soluble surrogate of CXCR4 and co-incubation with CXCL4L1 attenuated MIF responses in HEK293-CXCR4 transfectants, indicating that complex formation interferes with MIF/CXCR4 pathways. Because MIF and CXCL4L1 are platelet-derived products, we finally tested their role in platelet activation. Multi-photon microscopy, FLIM-FRET, and proximity-ligation assay visualized heterocomplexes in platelet aggregates and in clinical human thrombus sections obtained from peripheral artery disease (PAD) in patients undergoing thrombectomy. Moreover, heterocomplexes inhibited MIF-stimulated thrombus formation under flow and skewed the lamellipodia phenotype of adhering platelets. Our study establishes a novel molecular interaction that adds to the complexity of the chemokine interactome and chemokine/receptor-network. MIF/CXCL4L1, or more generally, ACK/CXC-motif chemokine heterocomplexes may be target structures that can be exploited to modulate inflammation and thrombosis.


Assuntos
Aterosclerose , Fatores Inibidores da Migração de Macrófagos , Trombose , Aterosclerose/metabolismo , Células HEK293 , Humanos , Inflamação/metabolismo , Oxirredutases Intramoleculares , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fator Plaquetário 4 , Receptores de Interleucina-8B/química , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo
14.
Redox Biol ; 56: 102438, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35981418

RESUMO

Inflammation plays an important role in hypertensive retinal vascular injury and subsequent retinopathy. Monocyte chemotaxis via CXCL1-CXCR2 binding has been implicated in various cardiovascular diseases, but the function of CXCL1-CXCR2 signalling involved in retinopathy, which was investigated as angiotensin II (Ang II)-induced retinopathy, is unclear. In our study, we established a hypertensive retinopathy (HR) model by Ang II infusion (3000 ng/min/kg) for 3 weeks. To determine the involvement of CXCR2 signalling, we used CXCR2 knockout (KO) mice or C57BL/6J wild-type (WT) mice as experimental subjects. The mice were treated with a CXCL1 neutralizing antibody or SB225002 (the specific CXCR2 inhibitor). Our results showed that after Ang II treatment, the mRNA levels of CXCL1 and CXCR2 and the number of CXCR2+ inflammatory cells were significantly elevated. Conversely, unlike in the IgG control group, the CXCL1 neutralizing antibody greatly reduced the increase in central retinal thickness induced by Ang II infusion, arteriolar remodelling, superoxide production, and retinal dysfunction in WT mice. Furthermore, Ang II infusion induced arteriolar remodelling, infiltration of Iba1+ macrophages, the production of oxidative stress, and retinal dysfunction, but the symptoms were ameliorated in CXCR2 KO mice and SB225002-treated mice. These protective effects were related to the reduction in the number of CXCR2+ immune cells, particularly macrophages, and the decrease in proinflammatory cytokine (IL-1ß, IL-6, TNF-ɑ, and MCP-1) expression in Ang II-treated retinas. Notably, serum CXCL1 levels and the number of CXCR2+ monocytes/neutrophils were higher in HR patients than in healthy controls. In conclusion, this study provides new evidence that the CXCL1-CXCR2 axis plays a vital role in the pathogenesis of hypertensive retinopathy, and selective blockade of CXCL1-CXCR2 activation may be a potential treatment for HR.


Assuntos
Angiotensina II , Retinopatia Hipertensiva , Angiotensina II/farmacologia , Animais , Anticorpos Neutralizantes , Quimiocina CXCL1 , Citocinas/metabolismo , Retinopatia Hipertensiva/induzido quimicamente , Imunoglobulina G , Interleucina-6 , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Compostos de Fenilureia , RNA Mensageiro , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Superóxidos , Fator de Necrose Tumoral alfa
15.
Mol Med Rep ; 26(4)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35920183

RESUMO

Understanding the relationship between the coexistence of inflammatory and neoplastic processes in ovarian cancer, particularly those involving chemokines and their receptors, may help to elucidate the involvement of the studied parameters in tumor pathogenesis and could lead to improved clinical applications. Therefore, the present study aimed to analyze the levels of C­X­C motif chemokine ligand 8 (CXCL8), and its receptors C­X­C chemokine receptor (CXCR)1 and CXCR2, in the serum and peritoneal fluid of women with ovarian cancer, and to evaluate the association between the expression of these parameters in tumor tissue and patient characteristics, particularly the degree of histological differentiation. The study group included women with ovarian cancer diagnosed with serous cystadenocarcinoma International Federation of Gynecology and Obstetrics stage IIIc and a control group, which consisted of women who were diagnosed with a benign lesion (serous cystadenoma). The transcript levels of CXCL8, CXCR1 and CXCR2 were evaluated using reverse transcription­quantitative PCR (RT­qPCR). The quantitative analysis was carried out using the LightCycler® 480 System and GoTaq® 1­Step RT­qPCR System, according to the manufacturers' instructions. The concentration of CXCL8 in serum and peritoneal fluid was determined using a Human Interleukin­8 ELISA kit, and the concentrations of CXCR1 and CXCR2 were determined using the CLOUD­CLONE ELISA kit. Local and systemic disturbances in immune and inflammatory responses involving the CXCL8 chemokine and its receptors indicated the involvement of these studied parameters in the pathogenesis of ovarian cancer. Immunoregulation of the CXCL8­CXCR1 system may influence the course of the inflammatory process accompanying ovarian cancer development, which may result in the identification of novel clinical applications; however, further studies are required.


Assuntos
Interleucina-8 , Neoplasias Ovarianas , Receptores de Interleucina-8A , Receptores de Interleucina-8B , Líquido Ascítico/metabolismo , Feminino , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo
16.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012531

RESUMO

Interactions between pancreatic cancer cells and pancreatic stellate cells (PSCs) play an important role in the progression of pancreatic cancer. Recent studies have shown that cellular senescence and senescence-associated secretory phenotype factors play roles in the progression of cancer. This study aimed to clarify the effects of senescence-induced PSCs on pancreatic cancer cells. Senescence was induced in primary-cultured human PSCs (hPSCs) through treatment with hydrogen peroxide or gemcitabine. Microarray and Gene Ontology analyses showed the alterations in genes and pathways related to cellular senescence and senescence-associated secretory phenotype factors, including the upregulation of C-X-C motif chemokine ligand (CXCL)-1, CXCL2, and CXCL3 through the induction of senescence in hPSCs. Conditioned media of senescent hPSCs increased the proliferation-as found in an assessment with a BrdU incorporation assay-and migration-as found in an assessment with wound-healing and two-chamber assays-of pancreatic cancer AsPC-1 and MIAPaca-2 cell lines. SB225002, a selective CXCR2 antagonist, and SCH-527123, a CXCR1/CXCR2 antagonist, attenuated the effects of conditioned media of senescent hPSCs on the proliferation and migration of pancreatic cancer cells. These results suggest a role of CXCLs as senescence-associated secretory phenotype factors in the interaction between senescent hPSCs and pancreatic cancer cells. Senescent PSCs might be novel therapeutic targets for pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Células Estreladas do Pâncreas , Linhagem Celular Tumoral , Proliferação de Células , Senescência Celular , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Humanos , Neoplasias Pancreáticas/metabolismo , Células Estreladas do Pâncreas/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Neoplasias Pancreáticas
17.
Front Immunol ; 13: 896645, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795659

RESUMO

Background: Crohn's disease (CD) and peripheral arterial disease (PAD) are closely related. The pathophysiological mechanisms underlying the coexistence of CD and PAD are unknown. The aim of this study was to investigate the key molecules and pathways mediating the co-occurrence of CD and PAD through quantitative bioinformatic analysis of a public RNA sequencing database. Methods: Datasets of CD (GSE111889) and PAD (GSE120642) were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were analyzed using the 'edgeR' and 'limma' packages of R. Gene Ontology and Kyoto Encyclopedia analyses of common DEGs were performed to explore the functions of DEGs. Protein-protein interaction (PPI) networks were established by the Search Tool for the Retrieval of Interacting Genes (STRING) database and visualized by Cytoscape. Hub genes were selected using the plugin cytoHubba. Hub gene validation was performed in GSE95095 for CD and GSE134431 for PAD. Receiver operating characteristic curves were used to evaluate the predictive values of the hub genes. Gene set enrichment analysis and immune infiltration of the hub genes were performed. Results: A total of 54 common DEGs (2 downregulated and 52 upregulated) were identified. Pathways of neutrophil chemotaxis, neutrophil migration and cytokine and cytokine receptors were enriched in CD and PAD. S100A8, S100A9, S100A12 and CXCR2 were identified as hub genes after validation, with all area under the curve > 0.7 for both CD and PAD. Neutrophil infiltration was associated with upregulation of the hub genes. Pathways of immune processes, including neutrophil activation, neutrophil chemotaxis, neutrophil migration were significantly correlated with high expression of S100A8, S100A9, S100A12 and CXCR2 in both CD and PAD. Conclusions: This bioinformatic study elucidates S100A8, S100A9, S100A12 and CXCR2 as hub genes for the co-occurrence of Crohn's disease and peripheral artery disease. Inflammation and immune regulation modulated by neutrophil infiltration play a central role in the development of CD and PAD and may be potential targets for diagnosis and treatment.


Assuntos
Doença de Crohn , Infiltração de Neutrófilos , Doença Arterial Periférica , Receptores de Interleucina-8B , Proteínas S100 , Doença de Crohn/genética , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Perfilação da Expressão Gênica , Humanos , Infiltração de Neutrófilos/imunologia , Doença Arterial Periférica/genética , Doença Arterial Periférica/imunologia , Doença Arterial Periférica/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo , Regulação para Cima
18.
Gastroenterology ; 163(4): 891-907, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35700773

RESUMO

BACKGROUND & AIMS: N6-Methyladenosine (m6A) is the most prevalent RNA modification and recognized as an important epitranscriptomic mechanism in colorectal cancer (CRC). We aimed to exploit whether and how tumor-intrinsic m6A modification driven by methyltransferase like 3 (METTL3) can dictate the immune landscape of CRC. METHODS: Mettl3 knockout mice, CD34+ humanized mice, and different syngeneic mice models were used. Immune cell composition and cytokine level were analyzed by flow cytometry and Cytokine 23-Plex immunoassay, respectively. M6A sequencing and RNA sequencing were performed to identify downstream targets and pathways of METTL3. Human CRC specimens (n = 176) were used to evaluate correlation between METTL3 expression and myeloid-derived suppressor cell (MDSC) infiltration. RESULTS: We demonstrated that silencing of METTL3 in CRC cells reduced MDSC accumulation to sustain activation and proliferation of CD4+ and CD8+ T cells, and eventually suppressed CRC in ApcMin/+Mettl3+/- mice, CD34+ humanized mice, and syngeneic mice models. Mechanistically, METTL3 activated the m6A-BHLHE41-CXCL1 axis by analysis of m6A sequencing, RNA sequencing, and cytokine arrays. METTL3 promoted BHLHE41 expression in an m6A-dependent manner, which subsequently induced CXCL1 transcription to enhance MDSC migration in vitro. However, the effect was negligible on BHLHE41 depletion, CXCL1 protein or CXCR2 inhibitor SB265610 administration, inferring that METTL3 promotes MDSC migration via BHLHE41-CXCL1/CXCR2. Consistently, depletion of MDSCs by anti-Gr1 antibody or SB265610 blocked the tumor-promoting effect of METTL3 in vivo. Importantly, targeting METTL3 by METTL3-single guide RNA or specific inhibitor potentiated the effect of anti-programmed cell death protein 1 (anti-PD1) treatment. CONCLUSIONS: Our study identifies METTL3 as a potential therapeutic target for CRC immunotherapy whose inhibition reverses immune suppression through the m6A-BHLHE41-CXCL1 axis. METTL3 inhibition plus anti-PD1 treatment shows promising antitumor efficacy against CRC.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL1 , Neoplasias Colorretais/patologia , Citocinas/metabolismo , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Knockout , Compostos de Fenilureia , RNA Guia de Cinetoplastídeos , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Triazóis
19.
Signal Transduct Target Ther ; 7(1): 194, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35764614

RESUMO

Neutrophil migration into the site of infection is necessary for antibacterial innate defense, whereas impaired neutrophil migration may result in excessive inflammation and even sepsis. The neutrophil migration directed by extracellular signals such as chemokines has been extensively studied, yet the intrinsic mechanism for determining neutrophil ability to migrate needs further investigation. N6-methyladenosine (m6A) RNA modification is important in immunity and inflammation, and our preliminary data indicate downregulation of RNA m6A demethylase alkB homolog 5 (ALKBH5) in neutrophils during bacterial infection. Whether m6A modification and ALKBH5 might intrinsically modulate neutrophil innate response remain unknown. Here we report that ALKBH5 is required for antibacterial innate defense by enhancing intrinsic ability of neutrophil migration. We found that deficiency of ALKBH5 increased mortality of mice with polymicrobial sepsis induced by cecal ligation and puncture (CLP), and Alkbh5-deficient CLP mice exhibited higher bacterial burden and massive proinflammatory cytokine production in the peritoneal cavity and blood because of less neutrophil migration. Alkbh5-deficient neutrophils had lower CXCR2 expression, thus exhibiting impaired migration toward chemokine CXCL2. Mechanistically, ALKBH5-mediated m6A demethylation empowered neutrophils with high migration capability through altering the RNA decay, consequently regulating protein expression of its targets, neutrophil migration-related molecules, including increased expression of neutrophil migration-promoting CXCR2 and NLRP12, but decreased expression of neutrophil migration-suppressive PTGER4, TNC, and WNK1. Our findings reveal a previously unknown role of ALKBH5 in imprinting migration-promoting transcriptome signatures in neutrophils and intrinsically promoting neutrophil migration for antibacterial defense, highlighting the potential application of targeting neutrophil m6A modification in controlling bacterial infections.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Neutrófilos , Sepse , Animais , Antibacterianos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Motivação , RNA/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Sepse/genética
20.
PLoS Pathog ; 18(3): e1010355, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35271688

RESUMO

Human cytomegalovirus (HCMV) is a major pathogen in immunocompromised patients. The UL146 gene exists as 14 diverse genotypes among clinical isolates, which encode 14 different CXC chemokines. One genotype (vCXCL1GT1) is a known agonist for CXCR1 and CXCR2, while two others (vCXCL1GT5 and vCXCL1GT6) lack the ELR motif considered crucial for CXCR1 and CXCR2 binding, thus suggesting another receptor targeting profile. To determine the receptor target for vCXCL1GT5, the chemokine was probed in a G protein signaling assay on all 18 classical human chemokine receptors, where CXCR2 was the only receptor being activated. In addition, vCXCL1GT5 recruited ß-arrestin in a BRET-based assay and induced migration in a chemotaxis assay through CXCR2, but not CXCR1. In contrast, vCXCL1GT1 stimulated G protein signaling, recruited ß-arrestin and induced migration through both CXCR1 and CXCR2. Both vCXCL1GT1 and vCXCL1GT5 induced equally potent and efficacious migration of neutrophils, and ELR vCXCL1GT4 and non-ELR vCXCL1GT6 activated only CXCR2. In contrast to most human chemokines, the 14 UL146 genotypes have remarkably long C-termini. Comparative modeling using Rosetta showed that each genotype could adopt the classic chemokine core structure, and predicted that the extended C-terminal tail of several genotypes (including vCXCL1GT1, vCXCL1GT4, vCXCL1GT5, and vCXCL1GT6) forms a novel ß-hairpin not found in human chemokines. Secondary NMR shift and TALOS+ analysis of vCXCL1GT1 supported the existence of two stable ß-strands. C-terminal deletion of vCXCL1GT1 resulted in a non-functional protein and in a shift to solvent exposure for tryptophan residues likely due to destabilization of the chemokine fold. The results demonstrate that non-ELR chemokines can activate CXCR2 and suggest that the UL146 chemokines have unique C-terminal structures that stabilize the chemokine fold. Increased knowledge of the structure and interaction partners of the chemokine variants encoded by UL146 is key to understanding why circulating HCMV strains sustain 14 stable genotypes.


Assuntos
Quimiocinas CXC , Citomegalovirus , Neutrófilos , Movimento Celular , Quimiocinas CXC/genética , Citomegalovirus/genética , Genótipo , Humanos , Interleucina-8 , Neutrófilos/citologia , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8B/agonistas , Receptores de Interleucina-8B/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA